Elite Power Simulator

Powered by DIEGS

User Guide

Public Information © onsemi 2024

Outline of User Guide

Outline of User Guide

1	Introduction to the Elite Power Simulator: What is it and What are the benefits
2	

onsemi's online Elite Power Simulator Powered by pless

- PLECS is a system level simulator that facilitates the modeling and simulation of complete systems with optimized device models for maximum speed and accuracy.
 PLECS is not a SPICE-based circuit simulator, where the focus is on low-level behavior of circuit components.
- Power transistors are treated as simple switches that can be easily configured to demonstrate losses associated with conduction and switching transitions.
- The PLECS models, referred to as "thermal models", are composed of lookup tables for conduction and switching losses, along with a thermal chain in the form of a Cauer or Foster equivalent network.
- During simulation, PLECS interpolates and/or extrapolates using the loss tables to get the bias point conduction and switching losses for the circuit operation.

www.onsemi.com/elite-power-simulator

Elite Power Simulator Features

Broad Range Of Circuit Topologies

Covering DC-DC, AC-DC, and DC-AC applications, including 32 circuit topologies in industrial (DC fast charging, UPS, ESS, solar inverters), automotive (OBC, traction), and nontraction spaces

Corner Simulation Capability

onsemi's PLECS models go beyond nominal data from datasheets to include based on physical correlations in t**industry first corner simulation** he manufacturing environment.

Custom PLECS Model

Interface with onsemi's **industry first Self-Service PLECS Model Generator** (SSPMG) to simulate with models tailored to your application.

Soft Switching Simulation

onsemi provides **industry first PLECS models valid for soft switching** applications such as DC-DC LLC and CLLC Resonant, Dual Active Bridge, and Phase Shifted Full Bridge.

Loss Plotting

Explore device conduction loss, switching energy loss, and thermal impedance in a multifunctional 3D data visualization utility. Flexible Design & Fast Simulations

Flexible to capture adjustments to various attributes such as, **gate drive impedance**, **cooling designs**, and **load profiling**.

www.onsemi.com/elite-power-simulator

Onsemi

onsemi's State-of-the-Art PLECS Models

 Typical industry PLECS models are composed of measurement-based loss tables that are consistent with datasheets provided by the manufacturer.

There are four major problems with this approach:

- 1. The switching energy loss data is dependent on the parasitics of the measurements set ups and circuits.
- 2. The conduction and switching energy loss data is limited and thus is often not dense enough to ensure accurate interpolation and minimal extrapolation by PLECS.
- 3. The loss data is based on nominal semiconductor process conditions only.
- 4. The switching energy loss data comes from datasheet double pulse generated loss data. This means the PLECS models are only valid for hard switching topology simulation. The models are highly inaccurate if used in soft switching topology simulation.
- onsemi's Self-Service PLECS Model Generator (SSPMG) provides solutions to all four problems.
- Ultimate power is delivered to the user to build PLECS models tailored for the user's application. Unleash the power here: <u>www.onsemi.com/self-plecs-generator</u>

Mixing onsemi SPICE expertise and pless power

Corner PLECS Models

- Conventional PLECS models based on measurements are only valid for the typical or nominal process case in manufacturing. onsemi has developed accurate corner PLECS models based on real manufacturing distribution.
- Physics dictates that worst case conduction and switching losses do not happen simultaneously for example.
- Depending on the application, the influence of conduction and switching energy losses on the overall system
 performance will vary. The onsemi corner PLECS models provide the user the flexibility to investigate the entire
 correlated space.
- Corner models currently available for EliteSiC and T10M 40V products. More T10 and FS7 IGBT corner models are coming soon.
- Accurate corner and statistical modeling covered in detail in
 - SiC MOSFET Corner and Statistical SPICE Model Generation Proceeding of International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 154-147, September 2020

Process Condition	R _{DSon} , V _{th} , BV	Capacitance, Device RG	Conduction Loss	Switching Energy Loss
Nominal	Nominal	Nominal	Nominal	Nominal
Best Case Conduction Loss, Worst Case Switching Loss	Low	High	Low	High
Worst Case Conduction Loss, Best Case Switching Loss	High	Low	High	Low
				OOSEM

Full Switching Energy Losses

Full Switching Simulation*

onsemi provides industry first Full Switching PLECS models valid for hard, soft, and partial soft switching including Synchronous Rectifier Operations. Example Full Switching topologies include DC-DC LLC and CLLC Resonant, Dual Active Bridge, and Phase Shifted Full Bridge.

*The Double Pulse Test is **NOT** representative of Soft Switching. Using double pulse switching energy losses in the simulation of a Soft Switching Topology is highly inaccurate.

Outline of User Guide

Access Elite Power Simulator with MYON Account

Access Through Direct Link or Product Page

In addition to direct access to the Elite Power Simulator www.onsemi.com/elite-power-simulator

Access is available on each EliteSiC, FS7 IGB, and T10 Si MOSFET Product Page.

Learn more about EliteSiC, FS7 IGBTs, and T10 Si MOSFETs at <u>EliteSiC</u> <u>Field Stop 7 (FS7) IGBTs</u> <u>T10 Si MOSFETs</u>

Outline of User Guide

Getting Started

Go to landing page <u>www.onsemi.com/elite-power-simulator</u> and select Simulate Now

Step 1: Select Application and Topology

rget application		
Automotive O Industrial	Application choice filters t	he available topologies
utomotive converter topologies		Active Front End (3 phase, 2 level)
AC/DC Active Front End (1 phase, 2 level) Active Front End (3 phase, 2 level) Active Front End (3 phase, 2 level) (Traction) Asymmetrical Bridgeless PFC Converter Boost PFC Converter (diode bridge) (1/2 phase) Classic Bridgeless PFC Converter Classic Bridgeless PFC Converter Cotempole Bridgeless PFC Converter (1/2/3 phase) Vienna Rectifier (3 phase, 1 switch per leg) Vienna Rectifier (3 phase, 2 switches per leg)	ses)	Basic circuit schematic displayed
DC/DC	~	

Elite Power Simulator Topologies & Applications

		Automotive converter topologies	Industrial convertor topologies	
	and the first state			Industrial converter topologies
All major topologies	are available :	AC/DC ~	AC/DC ~	
		DC/DC ~		AC/DC ~
	Automotive converter topologies		DC/DC	DC/DC
		DC/AC ^	Boost Converter Boost Converter (3 level, symmetric)	
Automotive converter topologies	AC/DC ~	Traction Inverter (3 phase)	Buck-Boost Converter (Inverting, 2 switch)	DC/AC ^
	De/De		Synchronous Boost Converter	Full Bridge Inverter (1 phase, 2 level)
AC/DC			Synchronous Baost Converter (3 level) Synchronous Buck Converter (3 level)	Half Bridge Inverter (1 phase, 2 level)
Active Front End (1 phase, 2 level)	Synchronous Buck Converter		Synchronous Buck-Boost Converter (inverting, 2 switch) Fiving Capacitor Boost Converter (3 level)	H5 Inverter
Active Front End (3 phase, 2 level) (Traction)	Synchronous Boost Converter (3 level) Synchronous Buck Converter (3 level)	Industrial converter topologies	Hybrid Switched Capacitor Converter	H6.5 Inverter Inverter (3 phase, 2 level, grid load)
Asymmetrical Bridgeless PFC Converter Boost PFC Converter (diode bridge) (1/2 phases)	Flyback Converter (1 switch) Flyback Converter (2 switch)	AC/DC	Resonant Switched Capacitor 4 to 1 Converter	Inverter (3 phase, 2 level, motor load) NPC Inverter (1 phase, 3 level)
Classic Bridgeless PFC Converter Totempole Bridgeless PFC Converter (1/2/3 phases)	Half-bridge LLC Resonant Converter	Active Front End (1 phase 2 level)	Flyback Converter (1 switch) Flyback Converter (2 switch)	NPC Inverter (3 phase, 3 level)
Vienna Rectifier (3 phase, 1 switch per leg)	Dual Active Bridge Converter	Active Front End (3 phase, 2 level)	Forward Converter (2 switch)	T-Type Inverter (1 phase, 3 level)
Vielina necunei (a priase, 2 switches per legy	CLLC Resonant Converter (charging mode) CLLC Resonant Converter (discharging mode)	Asymmetrical Bridgeless PFC Converter Boost PFC Converter (diode bridge) (1/2 phases)	Half-bridge Converter (hard-switched)	ANPC Inverter (1 phase, 3 level) ANPC Inverter (3 phase, 3 level) ANPC Inverter (3 phase, 3 level)
DC/DC ~	Phase Shift Full Bridge Converter	Classic Bridgeless PFC Converter Totempole Bridgeless PFC Converter (1/2/3 phases)	Full-bridge Converter (hard-switched) Half-bridge LLC Resonant Converter	Inverter (3 phase, 2 level, BLDC load)
	20/02	Vienna Rectifier (3 phase, 1 switch per leg)	Full-bridge LLC Resonant Converter Dual Active Bridge Converter	
DC/AC v	DC/AC V		CLLC Resonant Converter (charging mode)	
		DC/DC ~	CLCC resolutini Convertion (dischanging mode) Phase Shift Full Bridge Converter	New Topologies
		DC/AC ~	DC/AC ~	available with T10

onsemi.com products available are:

- EliteSiC Discretes and Modules
- Field Stop 7 IGBTs
- T10 Medium Voltage Silicon MOSFETs

Step 2: Select Device

Application	2 Device Selection	3 Device Configuration	Circuit Parameters —	5 Cooling			
Voltage and pow	ver rating Outpu	ut voltage V _{out}	Circuit imag MOSFE	e toggles based c For IGBT choice	n ^{ut}		
Value * 300 Rated power P _{out} Value * 4000 Use SiC MOSFETs, Si Select option * SiC MOSFETs (discrete)	Vrms,I-I 600 Inputs used to fi valid devices C modules, or Si IGBTs? etes) SiC MOSFET SiC modules Si IGBTs	Iter (discretes) (half bridge/six pack) Choose	e Device Type (V	aries Depending of	on Topology)		
Select MOSFET Please select device f	rom the list to continue.	ct device to move or	nto next step			Show all	
Product nar	ne	Family	V _{max} R	DS(on)	Package	Data Sheet	
O NVBG015	N065SC1	M2	650	12 145	D2PAK7	109	
O NVBG025	N065SC1	M2	650	19 106	D2PAK7	PDF	
O NVBG045	N065SC1	M2	650	31 62	D2PAK7	POF	
O NVBG060	N065SC1	M2	650	4		POF	
						/	

Onsemi

Step 3: Configure Device

View Device Loss Data

View Device Thermal Data

Step 4: Configure Circuit Parameters

Application	— 🕜 Device Selection –	Device Configuration	(4 Circuit Parameters	5 Cooling	6 Simulation	7 Summary
Circuit parameters	Set Circuit	parameters, varies	s by to	pology			
Power factor pf ^{Value *} 1		Grid frequency F _{ac} Value * 50	Hz				
Inductance L ^{Value *} 1	mH	Switching frequency F _{sw} _{Value} * 50	kHz				
Deadtime t _{dead} _{Value} * 200			ns			voltage	
Modulation scheme? Select option * Sine PWM			•				
Previous Step	Set modul	ation scheme, varie	es by	topology			Next Step

Step 5: Configure Cooling

Application	🖉 Device Selectio	n ——— 🕗 Device Configuration ———	Circuit Parameters	5 Cooling	6 Simulation	O Summary
Thermal parameter Thermal interface (gree Value * 0 Heat sink model • Fixed temperature	ase) resistance R _{th,ch}	Set Thermal interface Configure Heat sink	resistance as ideal with fixe	d temperatu	ire	K/W
Fixed temperature T _h _{Value} * 75		or input custo	om thermal impe	dance		°C
Previous Step						Next Step

Custom Heat Sink Thermal Impedance Utility

Step 6a: Run Simulation

Detailed temperature, loss, and efficiency reported

MOSFET	NVBG015N0	NVBG015N065SC1			Î.	
Module				ivot	to	hlo
IGBT				voi	เส	bie
Number of Parallel	1		e	xpc	ort (csv
Switch Max Tj	85.2 °C					
Heatsink Max Temp.	82.2 °C					
Ambient Temp.	75.0 °C					
sses Overview				ш	₽ ₹	~
Switching Losses		32.98 W				
Conduction Losses		3.20 W				
Combined Losses		36.18 W				
Efficiency		99.10 %				
sses Breakdown					₽	~
Turn-on Losses			11.09 W			
Turn-off Losses			2.71 W			
Recovery Losses			19.17 W			
Forward Conduction			0.32 W			
Reverse Conduction			1.68 W			
(Body) Diode Conduction (Deadtime)			1.21 W			

Step 6b: View Plots

Step 6c: Compare Multiple Simulation Cases

onsemi

Step 7: Review Summary Table

Load Profile Simulation

- Load profile simulation enables power and thermal estimations at multiple, userdefined operating points
- Simple intuitive flow

Topologies with Load Profiling NPC inverter (1 phase, 3 level) NPC inverter (3 phase, 3 level) T-Type inverter (1 phase, 3 level) T-Type inverter (3 phase, 3 level) ANPC inverter (1 phase, 3 level) ANPC inverter (3 phase, 3 level) Inverter (3 phase, 2 level, grid load) Inverter (3 phase, 2 level, motor load) Traction Inverter (3 phase)

Circuit parameters			
Use variable toggle to enable mission profile	•		
Output voltage V _{out}	-	Power factor pf	-
Value *		Value *	
380	Vrms,I-I	1	
Load frequency F _{ac}		Switching frequency F _{sw}	
Value *		Value *	
50	Hz	20	kHz
Deadtime t _{dead}		Inductance L	
Value *		Value *	
50	ns	1	mH
Output Current			
Value *			
15			A
Modulation scheme?			
Select option *			
Sine PWM			*

Load Profile Simulation

Mission Profile simulation button is enabled (orange) when any circuit parameter is enabled with a load profile

Example Load Profile Simulation Results

Losses can be tracked over the load profile by enabling the cursor

Junction Temperature

Questions?

Have questions, comments, or need support with your Elite Power Simulator needs? We're here to help! Write us an email at **elitesim@onsemi.com**.

• Self-Service PLECS Model Generator:

www.onsemi.com/self-plecs-generator

• Elite Power Simulator:

www.onsemi.com/elite-power-simulator

Onsemi

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com